Feel the Afterburn: How to Maximize the EPOC Effect

Understanding how high-intensity training affects your body’s metabolism will help you maximize the effects during AND after your workout.

Feeling hot and sweaty hours after a hard session in the gym? Feeling energized and alert? You can thank “excess post-exercise oxygen consumption” (EPOC) for boosting your metabolic rate and burning more calories for hours afterward.

Ever wondered exactly why this works?

There are many ways to maximize your “burn” in a given time period. Elite athletes can finely tune their minds and bodies to go to the point of almost complete exhaustion in the last few minutes of a race or an event. But this takes years of training and practice. For the rest of us, there are fitness strategies such as high-intensity interval training (HIIT). By repeating short bursts of intense movement with a short recovery, you can push yourself to your own personal limits.

Like all workouts, HIIT uses muscles, lots of muscles. Muscles contracting provide the power for each and every movement of the body. But each contraction needs energy, lots of energy. The more resistance (weights), the higher the number of reps (muscle contractions) and the time spent moving all vary the total amount of energy needed to sustain physical movement.

So first of all, it helps to know what your muscles are doing when you hit the gym.

As your heart rate increases, fat is slowly released from the body’s fat stores. Within 10 to 15 minutes, the release of fat reaches its peak. This fat circulates in the blood and is taken up by the muscles. Inside the muscles, both glycogen and fat are used as the fuel mix to sustain the energy needed to keep the muscles contracting.

Explosive and high-intensity movement causes a rapid rise in lactic acid. At the same time, muscles begin to “burn” and fatigue. Lactic acid is produced from glycogen (and glucose) when there is not enough oxygen available. It’s a small molecule released from the muscles and eventually converted back into glucose, then glycogen, by the liver. Surprisingly, and contrary to a long-held belief, it seems lactic acid is not the cause of the muscular burning sensation during intense workouts. Studies have even shown lactic acid may be beneficial in helping muscles continue to contract. The chemical cause of the burning sensation remains unknown, but sports scientists continue to search for it.

Metabolism boost in recovery

Once you stop working out, the process of recovery starts immediately. You might notice you often sweat, and keep sweating, sometimes for hours after you finish your workout. Sweating is necessary to keep you cool as your muscles, liver, heart and immune system begin the complex and energy-demanding process of recovering.

This persistent increase in metabolism is when excess post-exercise oxygen consumption comes into play.

The extra energy is used in many recovery processes. One major requirement is to remove most of the lactic acid. (As a chemical byproduct, it needs to be cleared and converted into a useful energy source.) The synthesis pathway to turn lactic acid back to glucose (then glycogen) costs energy and is an important function of the liver.

At the same time, muscles need to repair and adapt. This requires protein breakdown and synthesis. Again, this requires energy. Nerves need to make fresh neurotransmitters, and hormones used during a workout need to be freshly synthesized. It’s an energetically expensive process.

There is a direct relationship between the amount of energy used during a workout session and the amount of EPOC. Going hard in a HIIT workout will require more EPOC than taking it easy. By working your whole body (legs, arms and core), you can cycle through many of the major muscle groups, leaving each one in need of recovery and EPOC.

EPOC can generally be measured for up to three hours. The actual amount of calories used to recover, as a percentage of the total energy used during a training session, has been the subject of intense study. Somewhere between 6 and 15 percent seems to be the mainstream consensus, although it may be higher for elite athletes performing extreme physical activity.

It’s unlikely EPOC is the only beneficial aftereffect of movement, and the benefits of HIIT metabolically are still poorly understood. The question of why HIIT seems to burn more fat than other forms of movement definitely warrants more study. Also, EPOC varies between different people, and scientists cannot yet pinpoint the reasons for this variation. (Although, it seems not to be influenced by fitness, fatness or gender).

Make your EPOC epic

Like the workout itself, good recovery technique can improve performance and boost the benefits of training. Good recovery starts with hydration and nutrition. Ensuring you are adequately hydrated is vital to speed the removal of lactic acid and allow glycogen stores to be regenerated. High-quality carbohydrates and proteins should feature on all recovery menus. This should all be followed up with sleep. A long, restful night does wonders to help muscles recover for another high-energy day.

If you’re suffering from muscle soreness post-workout, there are some simple tips to get you through.

And remember, EPOC is one part of the important processes of recovery, so be realistic. It offers a nice bonus, but it does not mean that your midriff will magically sprout abs or that you can enjoy a completely guilt-free chocolate bar.

How to maximize EPOC

Professor David Cameron-Smith, Ph.D., is a regular contributor to Fit Planet. A transplanted Australian, he obtained a doctorate in nutritional biochemistry from Deakin University and undertook postdoctoral training at the Royal Prince Alfred Hospital in Sydney. His research interests include the importance of nutrition in the maintenance of optimal health in an ageing population and the impact of nutrition in regulating the function of muscles.

Photo credit: Courtesy of Les Mills